VMware Tanzu
Greenplum
An Introduction

May 2020
Future Looking Statements

Disclaimer

• *Presentations may contain product features or functionality that are currently under development.*

• *This overview of new technology represents no commitment from VMware to deliver these features in any generally available product.*

• *Features are subject to change, and must not be included in contracts, purchase orders, or sales agreements of any kind.*

• *Technical feasibility and market demand will affect final delivery.*

• *Pricing and packaging for any new features/functionality/technology discussed or presented, have not been determined.*

• *This information is confidential.*
Greenplum Keynote
Greenplum is the platform that can power your analytics needs now and, in the future. Let us show you how.

The Greenplum Analytics Platform
Historic Traditional Data Warehouse Process

Source Systems
- Billing/Transactions
- Operations
- CRM/ERP
- Legacy/Mainframe
- External Etc.

Integration
- Operational Data Stores
- Enterprise Information Integration

Presentation
- Central Warehouse
- Data Marts

Analysis
- Visualization
- Reports
- OLAP
- Scorecards & Dashboards
- Data Mining

Metadata Management
Use Cases for Analytics Have Expanded Dramatically
Today’s Data Architect can be Easily Overwhelmed

- Enterprise DB Data
- IoT Data
- Logs & Security Data
- Web, Mobile, Clickstream
- Image, Video, Voice Data
- JSON, XML, Geo, Graph
Redefining The Data Platform

Simplify for Efficiency and Cost Savings

Analyze Across Any New Dimensions

Greenplum
With Greenplum you can have a manageable single solution

- Enterprise DB Data
- IoT Data
- Logs & Security Data
- Web, Mobile, Clickstream
- Image, Video, Voice Data
- JSON, XML, Geo, Graph
What is Greenplum?

Enhanced PostgreSQL

Massively Parallel Database

Massive compute grid

Python and R High Performance Computing

Federated Query Database

A Structured and Semi-Structured Platform leveraging ANSI-SQL

Enterprise Search Platform

Analytics Database

Graph, Geospatial, Time Series and Image recognition
Greenplum Integrated Analytics
Market Shifts Towards Open Source Databases

1. Security
2. Quality
3. Customizability
4. Freedom
5. Flexibility
6. Interoperability
7. Auditability
8. Support Options
9. Cost
10. Try before you buy
Infrastructure Advances Accelerating
Data & Compute Architectures Becoming More Powerful

Data Center Revolution
Consolidation of data center’s provides unprecedented economies of scale

Industry Standards
x86 Arch, Linux OS, Kubernetes, Ethernet, TCP/IP and SQL provide today’s fabric for data computing

New Workloads
Large scale deployments of big data
And compute
“Cloud is about how you do computing, not where you do computing.”

Paul Maritz, CEO VMWare / Pivotal
Flexibility in Hybrid Cloud
“Find anyone who works at Pivotal and knows each other directly and whose name sounds like ‘Peter’ or ‘Pavan’ and have withdrawn an amount > $200 within 24 hours at an ATM less than 2 KM from a reference latitude and longitude”
Find anyone **who works at 'Pivotal'** and **know each other ‘directly’** and whose **names sound like ‘Peter’ or ‘Pavan’** and **have withdrawn an amount > $200** within **24 hours** at an **ATM less than 2 KM from reference latitude and longitude**.

CREATE FUNCTION get_people(person1 text, person2 text, amount int, duration int, longit float, latitude float) RETURNS int
AS $$
declare
linkchk integer; v1 record; v2 record;
begin
execute 'truncate table results;';
for v1 in select distinct a.id,a.firstname,a.lastname,amount,tran_date,c.lat,c.lng,address,a.description,d.score from people a,transactions b,location c,
(SELECT w.id, q.score FROM people w, gptext.search('gpadmin.public.people', 'Pivotal') q
WHERE (q.id::integer) = w.id order by 2 desc) d
where soundex(firstname)=soundex($1) and a.id=b.id and amount > $3 and (extract(epoch from tran_date) - extract(epoch from now()))/3600 < $4
and st_distance_sphere(st_makepoint($5, $6),st_makepoint(c.lng,c.lat))/1000.0 <= 2.0 and b.locid=c.locid and a.id=d.id
loop
for v2 in select distinct a.id,a.firstname,a.lastname,amount,tran_date,c.lat,c.lng,address,a.description,d.score from people a,transactions b,location c,
(SELECT w.id, q.score FROM people w, gptext.search('gpadmin.public.people', 'Pivotal', null) q
WHERE (q.id::integer) = w.id order by 2 desc) d
where soundex(firstname)=soundex($2) and a.id=b.id and amount > $3 and (extract(epoch from tran_date) - extract(epoch from now()))/3600 < $4
and st_distance_sphere(st_makepoint($5, $6),st_makepoint(c.lng,c.lat))/1000.0 <= 2.0 and b.locid=c.locid and a.id=d.id
loop
execute 'DROP TABLE IF EXISTS out, out_summary;';
execute 'SELECT madlib.graph_bfs(\'people\', \'id\', \'links\', v1.id, \'out\');';
select 1 into linkchk from out where dist=1 and id=v2.id;
if linkchk is not null then
insert into results values (v2.id,v2.firstname,v2.lastname,v2.amount,v2.tran_date,v2.lat,v2.lng,v2.address,v2.description,v2.score);
end if;
end loop;
drop all partitions of results;
return 0;
end
$" LANGUAGE plpgsql;
-- Call the function now
select get_people('Pavan', 'Peter',200,24,103.912680, 1.309432) ;
Coding Productivity Gain 100x vs Competition

Using a Hadoop Ecosystem: 10 steps, 3000+ Lines of code across 4 different systems

Using Greenplum: 1 step, 1 query – 34 Lines of Code

One query – using built-in functions: Soundex (sounds like), NLP (work at same company), Machine Learning MADlib (know directly), Time (yesterday), PostGIS (within 2km)
Greenplum Product Overview
Greenplum Data Sheet

Analytics Data Platform

Enhanced PostgreSQL for Analytical Workloads
ANSI standard SQL, ACID RDBMS, Optimized for Analytics and Big Data Storage & Processing

Massively Parallel Shared Nothing Database
Scale out horizontally from to hundreds of instances or servers

Streaming and Real-time Data Processing
Greenplum Streaming Server connects to Apache Kafka and has an extensible API supporting continual streaming ingestion

Federated Query Processing
S3, HDFS, Hive, Oracle, Parquet, AVRO, JSON and other systems and file formats accessible via Greenplum for query Processing

Hybrid Analytical and Transactions Processing
Simultaneous thousands of Update and Delete transactions per second, Dashboard index lookups and heavy analytics and reporting

Advanced Analytics Beyond OLAP
Machine learning, Deep Learning with GPUs, Time Series, Geospatial and Graph analytics all in the database.

Python, R, Java, Perl, C
User Defined Functions in popular programming languages programmatically modify and transform data. Import libraries in these languages

Enterprise Search Platform
Embedded parallel Apache Solr engines enabled full text indexing and search
Deploy Workloads on Any Infrastructure
One Analytics Data Platform Anywhere

Operating System

Containers

Infrastructure

Data Center

Bare-Metal

Other Kubernetes (on VMs or not)

Google Container Engine

vmware vSphere

Private Data Center

Containers

Operating System

Infrastructure

Cloud Services
Greenplum on Cloud
Elastic Capacity in Public Cloud

Automated Single Click Deploy
Deploy an optimized configuration to the public cloud through a wizard interface

Self Healing Cloud Infrastructure
Machines fail, and when they do Greenplum will automatically reallocate and leverage new cloud instances to replace failed ones

Database Snapshots
Database snapshots can be taken and replicated in the public cloud while users are connected to Greenplum and running workloads

Performance & Horizontal Scale
Bare metal equivalent performance and ability to scale out to larger clusters with cloud provisioned instances
Greenplum Building Blocks
Greenplum Reference Configuration Based on Dell

Optimized Configuration for Greenplum
Greenplum and Dell partner to select the ideal configuration for performance, usability and availability.

Simple & Flexible Blocks Design
Choose between compute, storage, or balanced block types and combine together into a single or multi-rack system that is easily expandable

2020 Dell Tech Components
Leverage NVMe Storage, 40 gig networking, Terabyte RAM, up to 192 cores per host, and multiple dedicated network channels for maximum performance
Extensible Data Types
Run Greenplum on any Data

JSON & XML
Store documents with flexible schemas and introspect document structures during query processing

Text, Image, Video
Store rich "unstructured" data in tables perform search and deep learning recognition on these types

Network Traffic, IoT, Logs
Ip Addresses, Ranges of Addresses, Packet Captures, System Logs, and IoT sensors stored and analyzed

Geo & Graph
Locations and relationships can be stored and natively analyzed

Extensible User Defined Data Types and Custom Processing Per Type
Data is Stored Everywhere

Greenplum Federated Query

Federated Query Processing
PXF extensible design can query external data in multiple formats and locations

Massively Parallel External Data Access
Each segment scans external data sources in parallel for Terabyte & Petabyte scale external tables

Smart Processing
Optimizer and query processing engine can push down filters and project column selection to remote system for minimized data transfers over the network
Multi-Temperature Data Storage

Greenplum Federated Query

Vertical Partitioning
Large fact tables divided into time ranges for efficient data access and retention policies

Polymorphic Partitioning
Different ranges in partitioned table can use different storage parameters and mediums

Optimizer Partition Elimination
Query processing will automatically only scan the storage mediums that contain data needed based on query conditions

Indices
Row Store

Column Store

External
S3 and HDFS

Temperature

- Storage based on operational requirements

- Can I work with data created few second ago?

- Can I run a report on data from few days ago?

- Can I inspect the data archived months or years ago?
MPP Shared Nothing Architecture
Performance Through Parallelism

Master Host connects with users and coordinates work with Segment Hosts.

Segment Host Manages Data and Processes Queries.

Segment Hosts have their own CPU, disk and memory (shared nothing).

High speed interconnect for continuous pipelining of data processing.
Parallel Query Optimizer

ORCA

Cost-based optimization looks for the most efficient query execution plan.

Query execution plan composed of “slices” for scans, joins, sorts, aggregations, etc.

Slices are performed in parallel across segment instances.

Motion operators for inter-segment communication.

- Scalable Complex Correlated Queries
- Common Table Expression Push Downs
- Dynamic Partition Elimination
Dynamic Pipelining
High speed interconnect

A supercomputing-based “soft-switch” responsible for
• Efficiently pumping streams of data between motion nodes during query-plan execution
• Delivers messages, moves data, collects results, and coordinates work among the segments in the system
• UDP or TCP Intersegment interconnect protocol
High Availability

- 2 copies of each segment data
- Automatic mirroring
- Automatic failover when hardware fails
- Proven in production over decade of runtime
Hybrid Transactional and Analytical Processing

Mixed Workloads for Analytics

Workload Management
Define resource groups to ensure allocation of allotted resource for each important workload

High Concurrency Analytics
Hundreds of parallel complex queries run in parallel

Index Lookups
100,000 plus index lookups per second for targeted queries

Updates and Deletes
Thousands of concurrent updates and deletes on the same table enabled by row locking and low overhead distributed transactions
Simple Interface to Advanced Functions
Powered by Apache Madlib

Train (build a predictive model)

```
SELECT madlib.linregr_train('houses',
  'houses_linregr_bedroom',
  'price',
  'ARRAY[1, tax, bath, size]',
  'bedroom'
);
```

Predict (use model on new data)

```
SELECT houses_test.*,
  madlib.linregr_predict(model.coef,
    ARRAY[1,tax,bath,price],
    houses_linregr_bedroom as models
)
FROM houses_test
WHERE houses_test.bedroom = model.bedroom;
```
Simple Interface to Advanced Functions

Powered by Apache Madlib

<table>
<thead>
<tr>
<th>id</th>
<th>tax</th>
<th>bedroom</th>
<th>bath</th>
<th>size</th>
<th>lot</th>
<th>predicted_price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>590</td>
<td>2</td>
<td>1</td>
<td>770</td>
<td>22100</td>
<td>43223.5393423991</td>
</tr>
<tr>
<td>2</td>
<td>1050</td>
<td>3</td>
<td>2</td>
<td>1410</td>
<td>12000</td>
<td>111527.609949684</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1060</td>
<td>3500</td>
<td>20187.9052986334</td>
</tr>
<tr>
<td>4</td>
<td>870</td>
<td>3</td>
<td>2</td>
<td>1300</td>
<td>17500</td>
<td>99354.9203362624</td>
</tr>
<tr>
<td>5</td>
<td>1320</td>
<td>3</td>
<td>2</td>
<td>1500</td>
<td>30000</td>
<td>124508.080626413</td>
</tr>
<tr>
<td>6</td>
<td>1350</td>
<td>2</td>
<td>1</td>
<td>820</td>
<td>25700</td>
<td>96640.8258367596</td>
</tr>
<tr>
<td>7</td>
<td>2790</td>
<td>3</td>
<td>2.5</td>
<td>2130</td>
<td>25000</td>
<td>224650.799707329</td>
</tr>
<tr>
<td>8</td>
<td>680</td>
<td>2</td>
<td>1</td>
<td>1170</td>
<td>22000</td>
<td>138458.174652714</td>
</tr>
<tr>
<td>9</td>
<td>1840</td>
<td>3</td>
<td>2</td>
<td>1500</td>
<td>19000</td>
<td>138650.335313723</td>
</tr>
<tr>
<td>10</td>
<td>3680</td>
<td>4</td>
<td>2</td>
<td>2790</td>
<td>20000</td>
<td>240000</td>
</tr>
<tr>
<td>11</td>
<td>1660</td>
<td>3</td>
<td>1</td>
<td>1030</td>
<td>17500</td>
<td>62911.27521866</td>
</tr>
<tr>
<td>12</td>
<td>1620</td>
<td>3</td>
<td>2</td>
<td>1250</td>
<td>20000</td>
<td>117007.693446415</td>
</tr>
<tr>
<td>13</td>
<td>3100</td>
<td>3</td>
<td>2</td>
<td>1760</td>
<td>38000</td>
<td>189203.861766405</td>
</tr>
<tr>
<td>14</td>
<td>2070</td>
<td>2</td>
<td>3</td>
<td>1550</td>
<td>14000</td>
<td>143322.539831872</td>
</tr>
<tr>
<td>15</td>
<td>650</td>
<td>3</td>
<td>1.5</td>
<td>1450</td>
<td>12000</td>
<td>82452.4386727394</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>etc...</td>
</tr>
</tbody>
</table>
Functions

Supervised Learning
- Neural Networks
- Support Vector Machines (SVM)
- Conditional Random Field (CRF)
- Regression Models
 - Clustered Variance
 - Cox-Proportional Hazards Regression
 - Elastic Net Regularization
 - Generalized Linear Models
 - Linear Regression
 - Logistic Regression
 - Marginal Effects
 - Multinomial Regression
 - Naïve Bayes
 - Ordinal Regression
 - Robust Variance
- Tree Methods
 - Decision Tree and Random Forest

Unsupervised Learning
- Association Rules (Apriori)
- Clustering (k-Means)
- Principal Component Analysis (PCA)
- Topic Modelling (Latent Dirichlet Allocation)

Deep Learning
- Keras Fit/Evaluate/Predict
- Load Model Architectures
- Preprocessor for Images
- Parallel Image Loading

Graph
- All Pairs Shortest Path (APSP)
- Breadth-First Search
- Hyperlink-Induced Topic Search (HITS)
- Average Path Length
- Closeness Centrality
- Graph Diameter
- In-Out Degree
- PageRank and Personalized PageRank
- Single Source Shortest Path (SSSP)
- Weakly Connected Components

Nearest Neighbors
- k-Nearest Neighbors

Time Series Analysis
- ARIMA

Sampling
- Balanced
- Random
- Stratified

Statistics
- Descriptive Statistics
- Cardinality Estimators
- Correlation and Covariance
- Summary
- Inferential Statistics - Hypothesis Tests
- Probability Functions

Data Types and Transformations
- Array and Matrix Operations
- Matrix Factorization
 - Low Rank
 - Singular Value Decomposition (SVD)
- Norms and Distance Functions
- Sparse Vectors
- Encoding Categorical Variables
- Path Functions
- Pivot
- Sessionize
- Stemming

Utility Functions
- Columns to Vector
- Conjugate Gradient Linear Solvers
 - Dense Linear Systems
 - Sparse Linear Systems
- Mini-Batching
- PMML Export
- Term Frequency for Text
- Vector to Columns

Model Selection
- Cross Validation
- Prediction Metrics
- Train-Test Split
Graph Analytics
Terabyte and Petabyte Scale Analysis of Graphs

Graph Algorithms and Measures

<table>
<thead>
<tr>
<th>Types</th>
<th>Question</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Group</td>
<td>“What are the sub-graphs, component, communities?”</td>
<td>weakly-connected component</td>
</tr>
<tr>
<td>2. Structure</td>
<td>“What is the character of the network structure?”</td>
<td>Density, Diameter, Average path length, Modularity</td>
</tr>
<tr>
<td>3. Path</td>
<td>“What is the shortest path (distance) among vertices?”</td>
<td>Single source shortest path, All pairs shortest path, Breadth-First Search</td>
</tr>
<tr>
<td>4. Centrality</td>
<td>“What are the most important vertices within a graph?”</td>
<td>Degree (in/out, weight), Closeness, PageRank, Hub, Authority, Betweenness, Clustering coefficient</td>
</tr>
</tbody>
</table>

Social Network
Epidemiology
Bank Risk
1st Party Fraud
MMO Role-Playing Game
Chemistry
Gene
Manufacturing

* Grandjean, M. (2016)
* https://www.nature.com/articles/
* https://www.netminer.com/community
* http://www.netminer.com/community
* https://cambridge-intelligence.com
* www.infoglide.com
* www.researchgate.net
* https://blog.trifinance.com
* www.researchgate.net
Deep Learning in our Super Computing Grid

GPU Accelerated

Train Neural Networks
Use unstructured data like images and text and have Greenplum train models to recognize patterns for identification

MPP Scale Performance
Train and compare thousands of models using the compute grid of Greenplum

Tensor Flow, Keras, GPUs
Industry standard libraries are used under the hood, complexity is managed for users by Greenplum
GeoSpatial Analytics
Storage and Query of Geo Data

Turn your big data database in a Geo database to store, search and analyze data based on locations
Text Search & Analytics

Index and find matching documents

Extract data from binary or human readable formats into data that a machine can understand and operate on.

Index the text data, so we can quickly search for specific text and documents.

Search the text for patterns and keywords.

Analyze what the text actually means.
Greenplum R
Server Side Compute Grid

1. R Code

2. Submit R code with gpApply()

3. Computation results
 - Data doesn’t need to leave the database
 - Push code to server

Test Locally and Execute Remotely

Massively Parallel Execution of R Functions on thousands of CPU Cores

Secure Execution on Server Side & Security of Data Living Greenplum (not local data)

Dynamic push of function code, no UDF writing needed

No data here
Procedural Programming Languages

Custom User Defined Functions

Server-Side Functions

- Process data row by row
- Massively parallel execution model
- Transform each row using a procedural language
- Security via containerized execution when needed
- Import OSS libraries for advanced functions (e.g. NLTK)
- Import enterprise libraries for access to your proprietary code logic
- User defined aggregates for grouping
- Call OSS Machine Learning algorithms
Greenplum Command Center

Single Pane of Glass for Greenplum Database Administrators
Greenplum Command Center
Alerts and Table Browser

Alerts Management

Alerts Management
Gartner Loves Greenplum

Ranked Number 1 Open Source Data Warehouse in the World!
Future Looking Statements

Disclaimer

• Presentations may contain product features or functionality that are currently under development.

• This overview of new technology represents no commitment from VMware to deliver these features in any generally available product.

• Features are subject to change, and must not be included in contracts, purchase orders, or sales agreements of any kind.

• Technical feasibility and market demand will affect final delivery.

• Pricing and packaging for any new features/functionality/technology discussed or presented, have not been determined.

• This information is confidential.
VmWare Tanzu Greenplum Roadmap

Contents of Presentation

1. Greenplum Platform Next Generation
2. DBA Operational Improvements
3. ETL and Data Integration Improvements
4. Analytics & Data Science Enhancements
5. Server Feature Release & Support Calendar
Introducing VMware Tanzu Greenplum
Greenplum Platform Roadmap
Expand on Greenplum’s traditional strength on bare metal with VMware’s virtualization expertise

<table>
<thead>
<tr>
<th>Off Platform</th>
<th>Virtualized</th>
<th>Containerized</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Bare Metal</td>
<td>- Vsphere</td>
<td>- Kubernetes</td>
</tr>
<tr>
<td>- Public Cloud</td>
<td>- VxRail</td>
<td>- VMware Cloud Foundation</td>
</tr>
</tbody>
</table>
Greenplum on vSphere
Testing and certification of vSphere platform

- Greenplum has been supported on vSphere for over 5 years
- Used heavily in test & dev scenarios
- Used in small to medium production scenarios

We can do more!

- Targeting large production clusters
- VMware Ready Node specification certifications
- Optimal configuration options documented
- Monitoring, troubleshooting and tuning guides
- VM deployment automation
Greenplum For Kubernetes Value Proposition

Advantages of containerization

<table>
<thead>
<tr>
<th>Speed</th>
<th>Savings</th>
<th>Security</th>
<th>Stability</th>
<th>Scalability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deploy in minutes</td>
<td>Operational Efficiency</td>
<td>Pre-hardened</td>
<td>Automated Recovery</td>
<td>Self-Service</td>
</tr>
<tr>
<td>Consistently Repeatable</td>
<td>With No Mirror Configurations</td>
<td>Pre-networked</td>
<td>Resource availability for recovery</td>
<td>Deployments</td>
</tr>
<tr>
<td>Agile Analytics</td>
<td>Leveraging Central Storage</td>
<td>Secured Docker Image</td>
<td>Faster Upgrade / Patching</td>
<td>K8s Volume Expansion</td>
</tr>
<tr>
<td>Workbench</td>
<td>Leverage org’s K8s skills</td>
<td>Quick New User Ramp Up</td>
<td>No Degraded Mode</td>
<td>Compute-Storage Separated</td>
</tr>
</tbody>
</table>

Available Now!

Continued optimization & tuning ongoing

Full stack component GP component list with Greenplum 6 in development
Greenplum Building Blocks on VxRail
Next gen platform appliance available for Greenplum

- 2010: EMC DCA v1, 2012 EMC DCA, 2016 EMC DCA V3, 2018 Dell Building Blocks
- 2020: Greenplum VxRail Building Blocks
- Software defined architecture consolidates compute, storage, virtualization, and management
- Smart Fabric Services for VxRail automates network setup, simplifying and accelerating deployment
- Provides a single point of support by default for all software and hardware
- Integrated vSan Storage provides mirroring at storage level not DB segment level
- VxRail tech specs per host:

 56 Cores, 1.5 TB RAM, 76 TB All Flash Storage, Write Caching 2x25 gb network for interconnect, 2x25 gb network for vSan storage
Greenplum DBA Operational Improvements
Multi Site Replication

- WAL **streaming** across two data centers
- Read-only live mirror cluster
- Allow for user defined, consistent Restore Points across all segments
- Supports failover and failback
- Maximum data availability
Point In Time Recovery

- WAL **archiving** on existing storage (Data Domain, S3, etc)

- A secondary Greenplum cluster is initialized, and Recovered up to an existing, defined Restore Point

- May be used to recover specific objects on a specific date

- May be used to seed Dev/QA databases
Greenplum Command Center
Greenplum Roadmap

Autonomous Database Features
Recommendation engine for key tasks like vacuum and analyze
In-App notifications for alerts in the dashboard

Solutions for More Scenarios
Plugin framework to create custom screens in GPCC
New plugins for:
* Greenplum Text
* PXF
* Streaming Server
* Kafka
* GP Backup Manager
* Greenplum For Kubernetes
Greenplum Database Server Release Calendar and Roadmap
Greenplum Releases

Greenplum Roadmap

Greenplum 4.3
Initial release: March 2015
Current Status: Maintenance Mode
End of General Support: Nov 30, 2020

Greenplum 5.X
Initial release: Sep 2017
Current Status: Limited Feature Release
End of General Support: TBD, targeted for 18 months from last minor version

Greenplum 6.X
Initial release: Sep 2019
Current Status: Active Development
End of General Support: TBD

Greenplum 7.X
Target release beta: March-2021
Target release GA: Sep-2021 GA
Current Status: Active Development; Not released yet
End of General Support: TBD

Greenplum Component Releases Ongoing
Greenplum Command Center
Greenplum Backup Manager
Greenplum Streaming Server
Greenplum Data Copy Utility
Greenplum Text
Apache Madlib
Greenplum 7 Server
Greenplum 7 Roadmap

Postgres Merge
Greenplum 7 is targeting Postgres 12
Greenplum 6 is based on Postgres 9.4
Greenplum 5 is based on Postgres 8.3

Query Performance
BRIN indices enable tracking of min and max values per block to bypass IO and speed analytical queries (similar to zone maps) and allow for immediate simple answers from your data
Postgres parallel query execution for CPU intensive operators enable elastic scaling up and down to meet available CPU resources
Just in Time (JIT) compilation allows rewriting of machine code execution at run-time speed analytical query execution

Query Federation
Statistics on external data allow complex workloads to run directly on external data leveraging optimized query plans
Improved Resource Utilization for PXF
Parallel Scan Operators for PXF
PXF caching to reduce IO to external data sets
Greenplum to Greenplum (GP2GP) foreign data wrapper allows multi-cluster architectures and cross cluster queries with MPP performance

DBA Operations
WAL Named Restore Points to support DR and PITR
Auto-vacuum on the catalog allows GPDB to run optimally with less attention from DBAs
Thank You
VMWare Tanzu Greenplum

Open Source Software Vs Commercial

Apache License V2.0

"Benevolent Dictator"
- VMware is the Steward

Value Proposition
- Added value to OSS
- Best Support

Naming
- Commercial: VMWare Tanzu Greenplum
- OSS: Greenplum Database

Available in VMWare Tanzu Greenplum Only
- Product packaging and installation scripts
- Greenplum Command Center
- Greenplum Workload Manager
- Text Analytics (GPText)
- Compression: Support for QuickLZ/ZStd
- Connectors:
 - Apache Spark Connector
 - VMware Tanzu Gemfire Connector
 - Apache Kafka Connector (gpkafka)
 - Apache Nifi Connector (Coming soon)
- Progress ODBC/JDBC drivers
- Premium Support