Measuring RSD in deep redshift surveys

Rossana Ruggeri
Collaborators: Will J. Percival, Héctor Gil Marín et al.
ICG, Portsmouth

April 5, 2017
Outline of my talk

Observational cosmology
 ▶ The galaxy power spectrum
 ▶ Observational effects
 ▶ Redshift space distortions
Outline of my talk

Observational cosmology
 - The galaxy power spectrum
 - Observational effects
 - Redshift space distortions

Measuring the redshift space distortions in eBOSS
 - Redshift binning vs redshift weights
 - Optimal redshift weights
 - Preliminary results
Observational cosmology: what does clustering mean?

Clustering strength = number of pairs beyond random

\[dP = \rho^2 [1 + \xi(r)] dV_1 dV_2 \] (1)
the “probability of seeing structure” can be recast in terms of the overdensity

\[\delta = \frac{(\rho(x) - \bar{\rho})}{\bar{\rho}} \]

(2)
Observational cosmology: formal clustering definitions

- the “probability of seeing structure” can be recast in terms of the overdensity

\[\delta = \left(\rho(x) - \bar{\rho} \right) / \bar{\rho} \]

(2)

- The correlation function of the field,

\[\xi(r) = \langle \delta(x)\delta(x + r) \rangle \]

(3)
the “probability of seeing structure” can be recast in terms of the overdensity

$$\delta = (\rho(x) - \bar{\rho}) / \bar{\rho}$$ \hspace{1cm} (2)

The correlation function of the field,

$$\xi(r) = \langle \delta(x) \delta(x+r) \rangle$$ \hspace{1cm} (3)

or its Fourier analogue, the power spectrum,

$$P(k) = \int d^3r \, \xi(r) e^{-ik \cdot r}$$ \hspace{1cm} (4)

which describes the amplitude of the fluctuations as a function of scale k.
Observational cosmology: the galaxy power spectrum

\[P_{gal}(k, \mu, z) = k^n T^2(k) D^2(z) [b(z) + f(z) \mu^2]^2 \]

\[\mu = \mathbf{k} \cdot \hat{n}/k; \quad \hat{n} = \text{line-of-sight} \]
Observational cosmology: the galaxy power spectrum

\[P_{\text{gal}}(k, \mu, z) = k^n T^2(k) D^2(z) [b(z) + f(z) \mu^2]^2 \]

\[\mu = \mathbf{k} \cdot \mathbf{n}/k; \quad \mathbf{n} = \text{line-of-sight} \]

(5)

Primordial power spectrum

- \(k^n \) (standard inflation)
- \(T^2(k) \rightarrow \Omega_m, m_\nu \ldots \)

Amplitude of clustering

- galaxy bias \(\rightarrow P_g = b(z)P_{dm} \)
- \(D(z) \rightarrow \Omega_m, m_\nu \ldots \)
Observational cosmology: the galaxy power spectrum

\[P_{\text{gal}}(k, \mu, z) = k^n T^2(k) D^2(z) [b(z) + f(z) \mu^2]^2 \]
\[\mu = k \cdot \hat{n}/k; \quad \hat{n} = \text{line-of-sight} \]

(5)

Primordial power spectrum
- \(k^n \) (standard inflation)
- \(T^2(k) \rightarrow \Omega_m, m_\nu \)

Amplitude of clustering
- galaxy bias \(\rightarrow P_g = b(z) P_{dm} \)
- \(D(z) \rightarrow \Omega_m, m_\nu \)
Observational cosmology: the galaxy power spectrum

\[P_{gal}(k, \mu, z) = k^n T^2(k) D^2(z) [b(z) + f(z) \mu^2]^2 \]
\[\mu = \mathbf{k} \cdot \mathbf{n} / k; \quad \mathbf{n} = \text{line-of-sight} \]

(5)

Primordial power spectrum

- \(k^n \) (standard inflation)
- \(T^2(k) \rightarrow \Omega_m, m_\nu \)

Amplitude of clustering

- galaxy bias \(\rightarrow P_g = b(z) P_{dm} \)
- \(D(z) \rightarrow \Omega_m, m_\nu \ldots \)

Observational effects \(\leftrightarrow k, \mu, f(z) \)

- Redshift Space Distortions (RSD)
- Alcock-Paczynksy effect
- (Baryonic acoustic oscillations)
The Baryonic Acoustic Oscillation: standard ruler

BAO as a standard ruler to better understand the nature of the acceleration.

\[r_s = \left(\frac{1}{H_0 \Omega_m^{1/2}} \right) \int_0^{a_*} \frac{da}{(a + a_{eq})^{1/2}}; \]

\[k_{bao} = \frac{2\pi}{r_s} \sim 0.06h/Mpc; \]
Galaxy distances are inferred from galaxy redshifts: using a wrong set of fiducial cosmological parameters to convert redshifts into distances introduces \textbf{artificial anisotropy}!

e.g. \(d_p(z) = \int_z^0 dz' \frac{c}{H(z')} \)
The Alcock-Paczynksy test

Galaxy distances are inferred from galaxy redshifts: using a wrong set of fiducial cosmological parameters to convert redshifts into distances introduces artificial anisotropy!

\[d_p(z) = \int_z^0 dz' \frac{c}{H(z')} \]

Known as Alcock-Paczynski distortion, (Alcock & Paczynski 1979).

- The effect scales differently along and perpendicular to the line-of-sight direction

\[\alpha_\parallel \propto \frac{H_{\text{fid}}(z)}{H(z)}, \quad \alpha_\perp \propto \frac{D_A(z)}{D_{A,\text{fid}}(z)} \quad (6) \]
The Redshift Space distortions

When making a 3D map of the Universe the radial distance is obtained from observed redshift.

Observed redshift has two components: the Hubble expansion and peculiar motion of galaxies, \(s(r) = r - v_r(r) \hat{r} \).

Line-of-sight selects out a special direction and breaks rotational symmetry of underlying correlations.
Mock real space
2dFGRS
The Redshift Space distortions

Linear regime → Coherent infall over-dense regions *squashed* and under-dense regions *stretched* along the line of-sight.

Non Linear regime → random (thermal) motion, (fingers-of-god)
The Redshift Space distortions

Linear regime \rightarrow Coherent infall over-dense regions *squashed* and under-dense regions *stretched* along the line of-sight.

Non Linear regime \rightarrow random (thermal) motion, (fingers-of-god)

At large scale the galaxies move because cosmological structure is growing through gravity. This growth is the dominant source of RSD.
Modelling the RSD in the galaxy power spectrum: a simple linear model
Modelling the RSD in the galaxy power spectrum: a simple linear model

- Mapping, $s(r) = r - v_r(r) \hat{r}$
Modelling the RSD in the galaxy power spectrum: a simple linear model

- Mapping, \(s(r) = r - v_r(r) \hat{r} \)
- Conservation of the number of galaxies between redshift and real space, \(\bar{n}(s)[1 + \delta^s(s)]s^2 ds = \bar{n}(r)[1 + \delta(r)]r^2 dr. \)
Modelling the RSD in the galaxy power spectrum: a simple linear model

- Mapping, $s(r) = r - v_r(r) \hat{r}$
- Conservation of the number of galaxies between redshift and real space,
 \[\bar{n}(s)[1 + \delta^s(s)]s^2 ds = \bar{n}(r)[1 + \delta(r)]r^2 dr. \]
- Linear perturbation theory
 \[
 \begin{align*}
 \partial \delta / \partial t + \theta &= 0; \quad \theta = \nabla u \quad (mass\ conservation) \\
 \partial u / \partial t + H u &= -\nabla \phi \quad (momentum\ conservation)
 \end{align*}
 \]
 \[P^s(k, \mu) = (b + f \mu^2)^2 P(k). \]
Modelling the RSD in the galaxy power spectrum: a simple linear model

- Mapping, $s(r) = r - v_r(r) \hat{r}$
- Conservation of the number of galaxies between redshift and real space, $\bar{n}(s)[1 + \delta^s(s)]s^2 ds = \bar{n}(r)[1 + \delta(r)]r^2 dr$.
- Linear perturbation theory

\begin{align*}
\partial \delta / \partial t + \theta &= 0; \quad \theta = \nabla u \quad (mass \ conservation) \\
\partial u / \partial t + \mathcal{H} u &= -\nabla \phi \quad (momentum \ conservation)
\end{align*}

(7)

\begin{equation}
P^s(k, \mu) = (b + f \mu^2)^2 P(k).
\end{equation}

(8)

It is convenient to expand the angular dependence on Legendre Polynomials, e.g. $P_0(k) = (b^2 + \frac{2}{3}bf + \frac{1}{5}f^2) P(k)$,
Modelling the RSD in the galaxy power spectrum: beyond linear approximation;

- Full mapping;
- Non linear perturbation theory

\[
\frac{\partial \delta}{\partial t} + \theta = - \int d^3k_1 d^3k_2 \delta_D(k - k_{12}) \alpha(k_1, k_2) \theta(k_1, t) \delta(k_2, ts) \\
\frac{\partial \theta}{\partial t} + H \theta + 3/2 \Omega_m H^2 \delta = - \int d^3k_1 d^3k_2 \delta_D(k - k_{12}) \\
\times \beta(k_1, k_2) \theta(k_1, \tau) \theta(k_2, \tau)
\]

expand density and velocity fields about the linear solutions;

\[
\delta_n(k) = \int d^3q_1 ... \int d^3q_n \delta_D(k - q_{1...n}) F_n(q_1, ..., q_n) \delta_1(q_1) ... \delta_1(q_n), \\
\theta_n(k) = \int d^3q_1 ... \int d^3q_n \delta_D(k - q_{1...n}) G_n(q_1, ..., q_n) \delta_1(q_1) ... \delta_1(q_n),
\]
Modelling the RSD in the galaxy power spectrum: beyond linear approximation;

\[P^s(k) = [P_{\delta\delta} + 2f \mu^2 P_{\delta\theta} + f^2 \mu^4 P_{\theta\theta} + A(k\mu) + B(k\mu)]D_{\text{FOG}}[k\mu f\sigma_v]; \]

(see Scoccimarro 2004; Taruya 2010;)
More improvements,

- non linear and non local galaxy bias (see Chan 2012)
- beyond standard perturbation theory
Future and current surveys analysis goals

- Improve the methodology used to analyse data
- Development of fast method to measure anisotropic signal
- **How to combine data from different volumes within the surveys.**
Current constrains from RSD on $f(z)$, $D(z)$, $b(z)$...

Constrain from different redshift bin of redshift evolving quantities

(S. Alam et al. 2016)
How to combine future data from wide redshift ranges
How to combine future data from wide redshift ranges

Redshift-bins splitting with traditional clustering analysis,
- loss of signal across bin boundaries
- computational expensive
- window function effects
How to combine future data from wide redshift ranges

Redshift-bins splitting with traditional clustering analysis,
- loss of signal across bin boundaries
- computational expensive
- window function effects

Optimal redshift weights as smoother windows on data,
- compression of the information in the redshift direction
- sensitivity to evolution with redshift
- Fisher prediction $\sim 30\%$ better than actual results
- decrease computational effort for large data sets
The search for optimal weights

Linear compression of a data-set \mathbf{x}, Gaussian distributed, with mean μ and covariance C,

$$y = \mathbf{w}^T \mathbf{x}.$$ \hspace{1cm} (9)

For a single parameter θ_i,

$$F_{ii} = \frac{1}{2} \left(\frac{\mathbf{w}^T C, i \mathbf{w}}{\mathbf{w}^T C \mathbf{w}} \right)^2 + \frac{(\mathbf{w}^T \mu, i)^2}{\mathbf{w}^T C \mathbf{w}},$$ \hspace{1cm} (10)

We maximise F_{ii} w.r.t \mathbf{w} assuming C apriori, C, $i = 0$ and the only non-trivial eigenvector is $\mathbf{w}^T = \frac{C}{\mathbf{w}} \mu$, i, \hspace{1cm} (11)

For $P(\mathbf{x})$, \mathbf{x} is formed by measurements of $\mathbf{2}$. \hspace{1cm}
The search for optimal weights

Linear compression of a data-set \mathbf{x}, Gaussian distributed, with mean μ and covariance C,

$$y = \mathbf{w}^T \mathbf{x}. \quad (9)$$

For a single parameter θ_i,

$$F_{ii} = \frac{1}{2} \left(\frac{\mathbf{w}^T C_{i,i} \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \right)^2 + \left(\frac{\mathbf{w}^T \mu_{i,i}}{\mathbf{w}^T \mathbf{C} \mathbf{w}} \right)^2. \quad (10)$$

We maximise F_{ii} w.r.t \mathbf{w} assuming \mathbf{C} a priori, $C_{i,i} = 0$ and the only non-trivial eigenvector is

$$\mathbf{w}^T = C^{-1} \mu_{i,i}, \quad (11)$$
The search for optimal weights

Linear compression of a data-set \(\mathbf{x} \), Gaussian distributed, with mean \(\mu \) and covariance \(C \),

\[
y = \mathbf{w}^T \mathbf{x}.
\]

(9)

For a single parameter \(\theta_i \),

\[
F_{ii} = \frac{1}{2} \left(\frac{\mathbf{w}^T C_{ii} \mathbf{w}}{\mathbf{w}^T C \mathbf{w}} \right)^2 + \frac{(\mathbf{w}^T \mu, i)^2}{\mathbf{w}^T C \mathbf{w}},
\]

(10)

We maximise \(F_{ii} \) w.r.t \(\mathbf{w} \) assuming \(C \) a priori, \(C_{ii} = 0 \) and the only non-trivial eigenvector is

\[
\mathbf{w}^T = C^{-1} \mu, i,
\]

(11)

For \(P(k) \), \(\mathbf{x} \) is formed by measurements of \(\delta^2 \).
Cosmological model

- We investigate the $\Omega_m(z)$ relation about ΛCDM model

$$\frac{\Omega_m(z)}{\Omega_{m,\text{fid}}(z)} = q_0(1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2),$$

$$y(z) + 1 \equiv \frac{\Omega_{m,\text{fid}}(z)}{\Omega_{m,\text{fid}}(z_p)};$$

- We derive a set of weights to optimally measure q_0, q_1 and q_2
Cosmological model

- We investigate the $\Omega_m(z)$ relation about ΛCDM model

\[
\frac{\Omega_m(z)}{\Omega_{m,\text{fid}}(z)} = q_0(1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2),
\]

\[y(z) + 1 \equiv \frac{\Omega_{m,\text{fid}}(z)}{\Omega_{m,\text{fid}}(z_p)};\]

- We derive a set of weights to optimally measure q_0, q_1 and q_2

- $\Omega_m(q_i)$ allows for different deviations from ΛCDM background: all the standard cosmological parameters can be written in terms of the q_i;
Cosmological model

- We investigate the $\Omega_m(z)$ relation about ΛCDM model

\[
\frac{\Omega_m(z)}{\Omega_{m,\text{fid}}(z)} = q_0(1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2),
\]

\[y(z) + 1 \equiv \frac{\Omega_{m,\text{fid}}(z)}{\Omega_{m,\text{fid}}(z_p)};\]

- We derive a set of weights to optimally measure q_0, q_1 and q_2

- $\Omega_m(q_i)$ allows for different deviations from ΛCDM background: all the standard cosmological parameters can be written in terms of the q_i;

 e.g $f(\Omega_m)$ for modified gravity, the AP parameters through $H(\Omega_m)$ for deviations from a fiducial geometry etc.
We investigate the $\Omega_m(z)$ relation about ΛCDM model

$$\frac{\Omega_m(z)}{\Omega_{m,fid}(z)} = q_0(1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2),$$

$$y(z) + 1 \equiv \Omega_{m,fid}(z)/\Omega_{m,fid}(z_p);$$

We derive a set of weights to optimally measure q_0, q_1 and q_2

$\Omega_m(q_i)$ allows for different deviations from ΛCDM background: all the standard cosmological parameters can be written in terms of the q_i;

e.g. $f(\Omega_m)$ for modified gravity, the AP parameters through $H(\Omega_m)$ for deviations from a fiducial geometry etc.
Modelling the observed power spectrum

\[\mathbf{w}^T = C^{-1} \mu_{,i} \leftrightarrow P_{,i} \] directly gives the form of the weights.
Modelling the observed power spectrum

\[\mathbf{w}^T = C^{-1} \mu, i \leftrightarrow P, i \] directly gives the form of the weights.

Redshift weighting assuming known distance-redshift relation

- linear model for redshift space distortions \((b, \sigma_8, f)\)
- bias fiducial model
- \([f \sigma_8]\) only
Modelling the observed power spectrum

\[w^T = C^{-1} \mu, i \leftrightarrow P, i \] directly gives the form of the weights.

Redshift weighting assuming known distance-redshift relation

- linear model for redshift space distortions (\(b, \sigma_8, f\))
- bias fiducial model
- \([f \sigma_8]\) only

Redshift weighting assuming unknown distance-redshift relation

- combining AP effect with RSD (\(\alpha_\parallel, \alpha_\perp, b, \sigma_8, f\))
Power Spectrum weights, when D_A is assumed known (b, σ_8, f)

\[P^s(k) = (b + f\mu_k^2)^2 P(k) \]

(Kaiser, 1987)

\[\Omega_m(z, q_0, q_1, q_2) \]
The dependence on the fiducial bias model
Power Spectrum weights, when D_A is unknown

\[P_{\ell}(k) = \frac{2\ell + 1}{2} \int_{-1}^{1} d\mu \, P(k^t, \mu^t) \mathcal{L}_{\ell}(\mu) \]

(14)
The quasar sample represents an important sample-test to investigate the improvements possible through the optimal weights. Characterized by a wide redshift range, $(0.9 - 2.2)$, and lower density $82.6/\text{deg}^2$;
The quasar sample represents an important sample-test to investigate the improvements possible through the optimal weights. Characterized by a wide redshift range, (0.9 – 2.2), and lower density 82.6/deg2;
Preliminary results: $[f \sigma_8]_{av}$ and b_{av}
Preliminary results: q_0, q_1, q_2, σ_v and b

$$\frac{\Omega_m(z)}{\Omega_{m,fid}(z)} = q_0 \left[1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2 \right] \rightarrow f[\Omega_m(z)], \sigma_8[\Omega_m(z)]$$
Preliminary results: q_0, q_1, q_2, σ_ν and b

$$\frac{\Omega_m(z)}{\Omega_{m,\text{fid}}(z)} = q_0 \left[1 + q_1 y(z) + \frac{1}{2} q_2 y(z)^2 \right] \to f[\Omega_m(z)], \sigma_8[\Omega_m(z)]$$
Preliminary results: q_0, q_1, q_2, σ_ν and b

\[b(z) = b(z_p) + \frac{\partial b}{\partial z}|_{z_p}(z - z_p) \]
Conclusion

- We investigate departures in $\Omega_m(q_i, z)$ about Λ CDM.
- Redshift weights to optimise the measurement of the q_i, $(b, \sigma_8, f, \alpha_\parallel, \alpha_\perp)$.
- RSD measurements on the eBOSS data
Conclusion

- We investigate departures in $\Omega_m(q_i, z)$ about Λ CDM.
- Redshift weights to optimise the measurement of the q_i, $(b, \sigma_8, f, \alpha_{||}, \alpha_{\perp})$.
- RSD measurements on the eBOSS data

DESI/EUCLID

- 20 - 30 million objects, $0.5 < z < 3.5$; 15-18,000 deg^2;
- Traditional analysis: e.g for DESI, to be repeated on 35 redshift bins, neglecting cross correlation between different volumes.
- Optimal weights technique, as a more efficient and accurate alternative would enhance S/N, considering all galaxy pairs.
- Weighting scheme: the method is flexible and works for other sets of parameters;
Alternative parametrization: Primordial non-Gaussianity from LSS

Scale dependent halo bias $b_{tot} = b + \Delta b$, $\Delta b(k) \propto f_{NL}/\alpha(k)$ (e.g. Dalai et al. 2008)
Very sensitive at large scales \rightarrow Splitting the survey volume decreases the S/N at large scales
30 – 40% of improvements for eBOSS

Mueller, Percival & Ruggeri (2017)