The halo model and cosmological power spectra

Alexander Mead - University of British Columbia
Collaborators - John Peacock, Catherine Heymans, Shahab Joudaki, Alan Heavens, Lucas Lombriser
Introduction

• Aim to understand the distribution of large-scale structure (matter) in the late (z < 2) Universe.

• Structure is traced out by galaxies, which we can see, but consists of a dark matter exoskeleton, often called the 'cosmic web'

• This structure can be simulated easily, and measured directly via weak gravitational lensing

• Different cosmological models predict very different patterns for the cosmic web, and can thus be distinguished using weak lensing.
The problem

- Structure in the late Universe is non-linear and complex
- Initial perturbations are linear and Gaussian
- Gravitational collapse makes things non-linear and non-Gaussian
- Late Universe must be modelled (e.g., weak lensing)
- Necessary to do this as a function of model (DE, MG, massive neutrinos)
The problem

- Structure in the late Universe is non-linear and complex
- Initial perturbations are linear and Gaussian
- Gravitational collapse makes things non-linear and non-Gaussian
- Late Universe must be modelled (e.g., weak lensing)
- Necessary to do this as a function of model (DE, MG, massive neutrinos)
The problem

- Structure in the late Universe is non-linear and complex
- Initial perturbations are linear and Gaussian
- Gravitational collapse makes things non-linear and non-Gaussian
- Late Universe must be modelled (e.g., weak lensing)
- Necessary to do this as a function of model (DE, MG, massive neutrinos)
Linear perturbation theory

\[1 + \delta(x) = \frac{\rho(x)}{\bar{\rho}} \]

\[\ddot{\delta} + 2H \dot{\delta} = 4\pi G \bar{\rho}_m \delta \]
Linear perturbation theory

\[1 + \delta(x) = \frac{\rho(x)}{\bar{\rho}} \]

\[\ddot{\delta} + 2H \dot{\delta} = 4\pi G \bar{\rho}_m \delta \]

\[\delta \propto a \]
The power spectrum of matter fluctuations

\[\Delta^2(k, z) = 4\pi V \left(\frac{k}{2\pi} \right)^3 P(k, z) \]

\[P(k, z) = \langle |\delta_k|^2 \rangle \]

\(k/(h \text{ Mpc}^{-1}) \)
N-body simulations

- Represent the smooth density field with 'N' particles
 - 1. Calculate the gravitational forces
 - 2. Move the particles
 - 3. Repeat
- Periodic boundaries
- Expanding box

\[
\ddot{\mathbf{r}} + 2H\dot{\mathbf{r}} = -\frac{1}{a^2} \nabla \Phi
\]
Simulation limitations

- Solve gravity only problem to high accuracy
- Expensive in terms of computing power
- It will never be possible to run accurate simulations for every model under consideration
- Investigating cosmological parameter space:
 - ΛCDM
 - Dark Energy (interacting?)
 - Massive neutrinos
 - Dark matter types
 - Modified gravity
 - Baryons?
The halo model

- Can be used to predict the clustering of matter (as well as of haloes or of galaxies) in the Universe
- Distinct from HALOFIT (Smith et al. 2003)

\[
\Delta^2(k) = \Delta^2_{2H} + \Delta^2_{1H}
\]

\[
\Delta^2_{1H}(k) = 4\pi \left(\frac{k}{2\pi} \right)^3 \frac{1}{\rho^2} \int_0^\infty M^2 W^2(k, M) f(M) \, dM
\]

large-scales \sim linear

small scales - contribution from haloes
\[\Delta_{1H}^2(k) = 4\pi \left(\frac{k}{2\pi} \right)^3 \frac{1}{\bar{\rho}^2} \int_0^\infty M^2 W^2(k, M) f(M) \, dM \]

\[
f(v) = A \left[1 + \frac{1}{(av^2)p} \right] e^{-av^2/2}
\]

\[
\nu = \frac{\delta_c}{\sigma(M)}
\]

\[
\rho(r) = \frac{\rho_N}{(r/r_s)(1+r/r_s)^2}
\]

\[
r_v = \left(\frac{3M}{4\pi\Delta \bar{\rho}} \right)^{1/3}
\]

\[
c(M, z) = A \frac{1+z_f}{1+z}
\]

Ingredients

- Halo mass function
- Peak to mass relation
- Halo density profiles
- Halo radius
- Halo concentration
\[\Delta^2(k) = \Delta^2_{2H} + \Delta^2_{1H} \]

\[\Delta^2_{2H} = \Delta^2_{\text{lin}} \]

\[\Delta^2_{1H}(k) = 4\pi \left(\frac{k}{2\pi} \right)^3 \frac{1}{\bar{n}^2} \int_0^\infty M^2 W^2(k, M) f(M) \, dM \]
Duffy concentration-mass relation

\[\Delta^2(k) \]

\[\Delta^2_{HM}/\Delta^2_{emu} \]

Simulation

\[z=0.0 \]
\[z=1.0 \]

\[k/(h \text{ Mpc}^{-1}) \]
Standard halo model

Problems

- Perturbation theory at large scales
- Transition region is problematic (voids, under-densities, NL bias)
- Filamentary structure missing
- Halo asphericity ignored
- Tidal alignment of haloes
- Assumes all objects virialized
- Halo substructure ignored
- Scatter in halo properties at fixed mass ignored
Method

• We want to remedy the inaccuracy of the halo model without breaking it

• Fixing all of the problems whilst being fully consistent would be hard

• Instead opt for the simpler goal of generating 'effective haloes', whose simple halo power spectrum accurately matches that of simulations
Variations in virial density
\[\Delta_v = 200 \]

\[\Delta_v = 400 \]

\[\Delta_v = 100 \]

Variations in linear collapse density
\[\delta_c = 1.686 \]

\[\delta_c = 1.65 \]

\[\delta_c = 1.7 \]
\[\frac{\Delta^2(k)}{\Delta^2_{\text{emu}}} \]

Simulation

\[z=0.0 \]

\[z=1.0 \]

fitting

\[\frac{\Delta^2_{\text{HM}}}{\Delta^2_{\text{emu}}} \]

\[k/(h \text{ Mpc}^{-1}) \]
Cosmic Emu (simulations) fit and comparison (Heitmann 2014)
Baryonic feedback

\[c(M, z) = A \frac{1 + z_f}{1 + z} \]

\[\frac{\Delta^2}{\Delta^2_{\text{mid}}} \]

Parameter: 7

Lowest value

Highest value

A=10

A=1
Baryonic feedback

\[\Delta^2(k) \]

\[\frac{\Delta^2(k)}{\Delta^2_{\text{DMONLY}}} \]

\[\Delta^2(k)_{\text{SIM}} \]

\[\theta_\xi \] [arcminutes]

\[\theta_\xi \] [degrees]

Simulation +
AGN
REF
DBLIM

Planck
CFHTLenS

-1 \times 10^{-6}
1 \times 10^{-6}
3 \times 10^{-6}

\[k/(h \text{ Mpc}^{-1}) \]

\[\theta [\text{arcminutes}] \]

\[\theta [\text{degrees}] \]
From Joudaki et al. (CFHTLenS revisited;1601.05786)
Dark energy

\[w = w_0 + (1 - a)w_a \]
Massive neutrinos

Simulation
Linear
Bird (2012)
Mead (2015)
This paper

$m_{\nu}=0.15 \text{ eV}; z=0$

$m_{\nu}=0.30 \text{ eV}; z=0$

$m_{\nu}=0.60 \text{ eV}; z=0$

$k / (\text{h Mpc}^{-1})$

$m_{\nu}=0.15 \text{ eV}; z=1$

$m_{\nu}=0.30 \text{ eV}; z=1$

$m_{\nu}=0.60 \text{ eV}; z=1$

$k / (\text{h Mpc}^{-1})$
Summary

• Matter power spectra accurate to 5% across a wide range of cosmological models (massive nu, dark energy)

• Publications
 • http://mnras.oxfordjournals.org/content/454/2/1958.full.pdf
 • http://mnras.oxfordjournals.org/content/459/2/1468.full.pdf

• Code available:
 • https://github.com/alexander-mead/HMcode

• Integrated into CAMB (halofit_ppf.f90 module)

• Relatively easy to add standard model extensions
Spherical collapse model

- 5% accuracy can be improved on if we work only with the power spectrum 'response'

- Consider models with fixed linear spectrum shape and amplitude, but that could differ via their growth history (e.g., dark energy)

- Look at differences in spherical-collapse model predictions.
Spherical-collapse model

\[\ddot{\delta} + 2H \dot{\delta} - \frac{4}{3} \frac{\dot{\delta}^2}{1 + \delta} = 4\pi G \bar{\rho} \delta (1 + \delta) \]
Spherical-collapse model

\[\ddot{\delta} + 2H \dot{\delta} - \frac{4}{3} \frac{\dot{\delta}^2}{1 + \delta} = 4\pi G \bar{\rho} \delta (1 + \delta) \]
Spherical-collapse model

\[\ddot{\delta} + 2H\dot{\delta} - \frac{4}{3} \frac{\dot{\delta}^2}{1 + \delta} = 4\pi G \bar{\rho} \delta (1 + \delta) \]

\[\ddot{\delta} + 2H\dot{\delta} = 4\pi G \bar{\rho} \delta \]
Table 1. Cosmological parameters of the simulations used in this paper. Dynamical dark energy is parameterised via \[w(a) = w_0 + (1 - a)w_a \] and is taken to be spatially homogeneous and thus only affects the background expansion. All simulations use \(512^3 \) particles in cubes of size \(L = 200h^{-1}\text{Mpc} \), and start from initial conditions with identical mode phases, but with initial amplitudes adjusted to ensure \(\sigma_8 = 0.8 \) at \(z = 0 \). The shape of the linear spectrum used to generate the initial conditions is identical in each case, and was generated using CAMB (Lewis et al. 2000) with cosmological parameters \(\Omega_m = 0.3, \Omega_w = 1 - \Omega_m, \Omega_b = 0.05, h = 0.7, n_s = 0.96 \) and \(w = -1 \). For each cosmology, I ran 3 different realisations of initial conditions. Also shown are the spherical-model parameters \(\delta_c \) and \(\Delta_v \) from a numerical calculation.

<table>
<thead>
<tr>
<th>Cosmology</th>
<th>(\Omega_m)</th>
<th>(\Omega_w)</th>
<th>(w_0)</th>
<th>(w_a)</th>
<th>(\delta_c)</th>
<th>(\Delta_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda)CDM</td>
<td>0.3</td>
<td>0.7</td>
<td>-1</td>
<td>0</td>
<td>1.6755</td>
<td>310.1</td>
</tr>
<tr>
<td>EdS</td>
<td>1.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>1.6866</td>
<td>177.7</td>
</tr>
<tr>
<td>Open</td>
<td>0.3</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>1.6513</td>
<td>402.0</td>
</tr>
<tr>
<td>DE1</td>
<td>0.3</td>
<td>0.7</td>
<td>-0.7</td>
<td>0</td>
<td>1.6695</td>
<td>342.7</td>
</tr>
<tr>
<td>DE2</td>
<td>0.3</td>
<td>0.7</td>
<td>-1.3</td>
<td>0</td>
<td>1.6787</td>
<td>282.4</td>
</tr>
<tr>
<td>DE3</td>
<td>0.3</td>
<td>0.7</td>
<td>-1</td>
<td>0.5</td>
<td>1.6724</td>
<td>318.5</td>
</tr>
<tr>
<td>DE4</td>
<td>0.3</td>
<td>0.7</td>
<td>-1</td>
<td>-0.5</td>
<td>1.6773</td>
<td>301.6</td>
</tr>
<tr>
<td>DE5</td>
<td>0.3</td>
<td>0.7</td>
<td>-0.7</td>
<td>-1.5</td>
<td>1.6774</td>
<td>313.3</td>
</tr>
<tr>
<td>DE6</td>
<td>0.3</td>
<td>0.7</td>
<td>-1.3</td>
<td>0.5</td>
<td>1.6771</td>
<td>290.1</td>
</tr>
</tbody>
</table>
Spherical collapse model

Real space

Redshift space

DE only; real space

DE only; redshift space

$k / (h \text{ Mpc}^{-1})$

$P(k_x) / P(k_{x,\Lambda CDM})$

$P_0(k_x) / P_0(k_{x,\Lambda CDM})$

$x = \text{Halo model}$

$x = \text{Takahashi (2012)}$

$x = \text{Simulation}$

$w_0 = -0.7$, $w_a = 0.5$

$w_0 = -1.3$, $w_a = 0.5$

$w = -0.7$, $w_a = -1.5$

$w = -1.3$, $w_a = -1.5$

$w = -1.3$

EdS

Open
Including δ_c

Including Δv

Including c(M) hysteresis
Summary

• Matter 'power spectrum response' accurate to 1-2% for \(k < 5h \) Mpc\(^{-1}\) (Euclid or LSST lensing accuracy)

• No fitted parameters

• Publication:

• Code available:
 - https://github.com/alexander-mead/collapse

• Papers also contain accurate fitting functions for \(\delta_c \) and \(\Delta_v \) for a wide range of dark energy models