Outline

- Dark Energy science with the LSST
 - Main dark energy probes
 - Systematics-limited analyses
- DESC projects and opportunities for engagement
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
- Summary
● Dark Energy science with the LSST
 • Main dark energy probes
 • Systematics-limited analyses
● DESC projects and opportunities for engagement
 • The Core Cosmology Library
 • The LSS loop
 • LSS with HSC DR1
 • The 3x2pt pipeline
 • TJPCosmo
● Summary
Dark Energy science with the LSST

Outstanding numbers:
- World's largest imager
 8.4 m, 9.6 sq-deg FOV
- Wide: 20K sq-deg
- Deep: r~27
- Fast: ~100 visits per year
- Big data: ~15 TB per day

Dark Energy Science Collaboration:
- Supernovae
- Cluster science
- Strong lensing
- Weak lensing
- Large-scale structure

LSST Coll. et al. 0912.0201
Main Dark Energy probes

Large-Scale Structure (DESC co-convener):
- DE affects cosmic density field
- Galaxy distribution \leftrightarrow matter density
- Main systematic \rightarrow galaxy-matter connection

In general:
$$\delta_g(x) = f[\delta_M(y)] + \epsilon(x)$$

On large scales:
$$\delta_g \sim b_g \delta_M$$
Main Dark Energy probes

Amplitude of fluctuations vs. Scale

- Growth
- Scale dependence
- Small scales

LSS X and $✓$
Main Dark Energy probes

Weak gravitational lensing:

- Intervening matter modifies observed galaxy shapes.
- Tracer of the true matter distribution → no bias!
- Large radial projection kernel → no scale-dependence

Credit: NASA/ESA
Main Dark Energy probes

Amplitude of fluctuations

Scale

Growth

Scale dependence

Small scales

LSS
WL

LSS
WL
Main Dark Energy probes

LSS-WL complementarity

Amplitude of fluctuations

Scale dependence

Small scales

Growth

LSS ∨ WL

LSS ∨ WL

LSS ∨ WL

LSS ∨ WL

LSS + WL

DA et al. 1610.09290
• **Dark Energy science with the LSST**
 - Main dark energy probes
 - Systematics-limited analyses
• **DESC projects and opportunities for engagement**
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
• **Summary**
Sky systematics:
- Galactic dust
- Star contamination
- Star obscuration
- Airmass, seeing, depth

Elvin-Poole et al. 2017
Sky systematics:
- Galactic dust
- Star contamination
- Star obscuration
- Airmass, seeing, depth

Photometric redshifts:
- Loss of small radial scales
- Complicated 3D analysis
 → tomography
- Uncertain redshift distributions

Hildebrandt et al. 2016
Sky systematics:
- Galactic dust
- Star contamination
- Star obscuration
- Airmass, seeing, depth

Photometric redshifts:
- Loss of small radial scales
- Complicated 3D analysis
 → tomography
- Uncertain redshift distributions

Correlated systematics:
E.g. dust, blending etc.
Systematics-limited analyses: astrophysical systematics

Galaxy clustering
- Galaxy bias
- Magnification bias

Weak lensing
- Baryonic effects
- Intrinsic alignments

\[\delta_g(x) = b_1 \delta_m(x) + b_2 \delta^2_m(x) + b_s s^2(x) + \cdots \]
\[\gamma_{ij}^I = C_1 s_{ij} + C_2 (s_{ik} s_{kj}) + C_\delta (\delta s_{ij}) + C_t t_{ij} + \cdots \]

Credit: J. Blazek

Lorenz et al. 2017
Galaxy clustering
- Galaxy bias
- Magnification bias

Weak lensing
- Baryonic effects
- Intrinsic alignments

Systematics-limited analyses: astrophysical systematics

\[\delta_g(x) = b_1 \delta_m(x) + b_2 \delta^2_m(x) + b_s s^2(x) + \cdots \]

\[\gamma_{ij}^I = C_1 s_{ij} + C_2 (s_{ik} s_{kj}) + C_\delta (\delta s_{ij}) + C_t t_{ij} + \cdots \]

Credit: J. Blazek

Chisari et al. 2018

Lorenz et al. 2017

Credit: E. Chisari
Systematics-limited analyses: likelihood systematics

- Covariance matrices
- Correlated variables
- Non-Gaussian likelihoods

Krause et al. 2017
• Covariance matrices

• Correlated variables

• Non-Gaussian likelihoods

Systematics-limited analyses: likelihood systematics

Krause et al. 2017
Systematics-limited analyses: likelihood systematics

- Covariance matrices
- Correlated variables
- Non-Gaussian likelihoods

Sellentin et al. 2017
Hamimeche and Lewis 2009
Outline

- **Dark Energy science with the LSST**
 - Main dark energy probes
 - Systematics-limited analyses
- **DESC projects and opportunities for engagement**
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
- **Summary**
The Dark Energy Science Collaboration (DESC)
The Dark Energy Science Collaboration (DESC)
Outline

- Dark Energy science with the LSST
 - Main dark energy probes
 - Systematics-limited analyses
- **DESC projects and opportunities for engagement**
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
- **Summary**
Concept:
“LSST DESC Core Cosmology Library (CCL) provides routines to compute general cosmological observables with validated numerical accuracy.”

Motivation:
• Precision cosmology → controlled accuracy
• Multiple probes → consistency
• Synergies → generality
CCL: science capabilities

Cosmology
$\Omega_M, w_0, \sigma_8 \ldots$

CLASS
HaloFit
Emulators
E&H, BBKS

Matter power Spectrum $P(k)$

Background quantities
$d_A(z), \chi(z), D(z), f(z)\ldots$

Density tracers:
(GC, WL, CMBL \ldots)
(incl. astrophysical syst.)

Angular correlation Functions $\xi(\theta)$

Halo model quantities
$n(M), b(M), \sigma(M)$

Angular power spectra C_ℓ
LSST DESC Core Cosmology Library (ccl) provides routines to compute basic cosmological observables with validated numerical accuracy.

The library is written in C99 and all functionality is directly callable from C and C++ code. We also provide Python bindings for higher-level functions.
In [1]:

```python
import numpy as np
import pylab as plt
import pyccl as ccl

%matplotlib inline

Omega_c = 0.27, Omega_b = 0.045,
h = 0.7, A_s = 2.1e-9, n_s = 0.96

z = np.linspace(0., 1., 200)
dNdz = np.exp(-(z - 0.5)**2)
lens = ccl.ClTracerLensing(cosmo, False, z=z, n=dNdz)
ell = np.arange(2, 100)
cls = ccl.angular_cl(cosmo, lens, lens, ell)

plt.loglog(l, Cl)
```
CCL: software implementation

DESC Core Cosmology Library: cosmology routines with validated numerical accuracy

In [1]:
```python
import numpy as np
import matplotlib.pyplot as plt
import pyccl as ccl

%matplotlib inline

cosmo = ccl.Cosmology(Omega_c=0.27, Omega_b=0.045,
                      h=0.67, A_s=2.1e-9, n_s=0.96)

z = np.linspace(0., 1., 200)
dNdz = np.exp(-(z - 0.5)**2)
lens = ccl.ClTracerLensing(cosmo, False, z=z, n=dNdz)

ell = np.arange(2, 100)
cls = ccl.angular_cl(cosmo, lens, lens, ell)
```
CCL: coding with a bunch of physicists

+23 others!

- Work through github
- Contributions through pull requests
- Strict code review
- New science subject to external benchmarks
- Unit tests!
- More unit tests!
- Bi-weekly telecons
- Crucial project management
- Paper out soon!
CCL: coding with a bunch of physicists

+23 others!

- Work through github
- Contributions through pull requests
- Strict code review
- New science subject to external benchmarks
- Unit tests!
- More unit tests!
- Bi-weekly telecons
- Crucial **project management**
- Paper out soon!

E. Chisari
• Generic non-linear formalisms for 2-point functions
• Halo models
• Beyond wCDM
• Beyond 2-point functions
• Consistent LSS-CMB correlations
• Primordial non-Gaussianity

https://github.com/DarkEnergyScienceCollaboration/CCL
Outline

- Dark Energy science with the LSST
 - Main dark energy probes
 - Systematics-limited analyses
- DESC projects and opportunities for engagement
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
- Summary
The LSS loop

Idea:
Fast round-trip loop that allows us to validate our pipeline with good statistics.

Motivation:
- Make sure we have all the necessary pieces.
- Incremental improvement by gradually adding more realism.
- Science! Quantitative analysis of the impact of different systematics.

https://github.com/LSSTDESC/2pt_validation/
The LSS loop: CoLoRe

Idea:
Run **FAST** simulations of multiple correlated cosmological observables.

Currently implemented:
- Galaxy clustering
- Weak lensing
- Intensity mapping
- CMB lensing
- ISW

3D Gaussian fields at $z=0$. Cartesian box

- Physical $\delta (>1)$ (LN, 1LPT, 2LPT...)
- Interpolation to spherical shells
- Rotation to observer coordinates
- Light-cone evolution
- Biasing

$
\mathbf{K} \quad \mathbf{\phi} \quad \mathbf{\delta_a} \quad \mathbf{V_r} \quad \mathbf{\nabla^2\phi}
$

https://github.com/damonge/CoLoRe
The LSS loop: fastcat

Idea:
Software to post-process clean galaxy catalogs and add “dirt” (sky systematics, photo-z uncertainties, stars etc.)

Currently implemented
- Different photo-z models
- Depth variations through input window function

Wishlist
- Scale to LSST-like sample sizes
- Realistic dust models (e.g. correlation with PZ).
- Realistic star contamination.

README.md

fastcat

Fast and dirty creation of fast and dirty mock galaxy catalogs

https://github.com/slosar/fastcat
The LSS loop: NaMaster

Galaxy positions

Mask $w(\theta)$

Overdensity map
$\delta(\theta) = n(\theta)/[\bar{n} w(\theta)] - 1$

Systematics maps

Power spectrum
C_ℓ^{12}

Mode-coupling Matrix
$M_{\ell\ell'}(w_1, w_2)$

Deprojection bias
B_{ℓ}^{12}

Contaminant deprojection

NaMaster

Idea:
Fast and general code to compute C_l between any two fields defined on S^2. Include systematics marg. at the map level.

https://github.com/damonge/NaMaster
The LSS loop: Current status

Validated:
- CoLoRe
- NaMaster
- CCL
- fastcat

First chains run during hack day (Feb. SLAC meeting).
The LSS loop: open projects. Contribute!

• Finish validation at the likelihood level
• Implement more complex systematics in fastcat
• Scale fastcat up
• Start using it for science!
 • Dust-photo-z correlation
 • Photo-z – Clustering strength correlation
 • Dust resolution needs for LSST galaxy clustering

https://github.com/LSSTDESC/2pt_validation/
Outline

- **Dark Energy science with the LSST**
 - Main dark energy probes
 - Systematics-limited analyses
- **DESC projects and opportunities for engagement**
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
- **Summary**
Idea:
Use public HSC data to perform galaxy clustering analysis.

Motivation:
- Same DM pipeline and data format as LSST.
- Learn from these data and use them to improve LSST DM.
- Unused state-of-the-art data!
- New regime of depth and systematics
- Prove that C_ℓ pipelines can deal with this.
LSS with HSC: work done

Characterized global sky systematics:
- Dust extinction
- Star contamination
- Depth variations
- Bright-object mask
LSS with HSC: work done

Measured un-binned power spectra:
LSS with HSC: work done

Compared against simplest theory!

Photo-z characterization + linear bias + CCL
LSS with HSC: work to be done. Contribute!

- Characterize per-exposure systematics (airmass, PSF etc.)
- Study photo-z binning and per-bin systematics
- ...
- Full cosmological analysis!

https://github.com/LSSTDESC/HyperSupremeStructure-HSC-LSS
Outline

• Dark Energy science with the LSST
 • Main dark energy probes
 • Systematics-limited analyses
• DESC projects and opportunities for engagement
 • The Core Cosmology Library
 • The LSS loop
 • LSS with HSC DR1
 • The 3x2pt pipeline
 • TJPCosmo
• Summary
3x2pt stands for the three most relevant 2-point correlation functions for cosmology:

- Galaxy - Galaxy
- Galaxy - Lensing
- Lensing - Lensing

Idea: develop a joint analysis pipeline between LSS and WL with 3x2pt as data vector.

Motivation:
- WL and LSS will only constrain DE if combined
- Similar observables: two-point functions of different fields
- Shared systematics (photo-z, sky, astrophysics)
The 3x2pt pipeline

Tonnes of things to be done!
- Data formats (maps, catalogs, 2-points)
- Systematics mapper
- Masks and random catalog
- Sample selectors
- ...

Tonnes of applications!
- Consistent analysis of existing data
- Analysis of LSST DC2-3 and commissioning data
- Extensions to Nx2pt (Clusters, CMB lensing, tSZ) or even NxMpt

https://github.com/LSSTDESC/TXPipe
Outline

- Dark Energy science with the LSST
 - Main dark energy probes
 - Systematics-limited analyses
- DESC projects and opportunities for engagement
 - The Core Cosmology Library
 - The LSS loop
 - LSS with HSC DR1
 - The 3x2pt pipeline
 - TJPCosmo
- Summary
Idea:
Likelihood module that can combine multiple cosmological probes with theory predictions to obtain joint constraints on cosmological parameters.

Motivation:
- Non-trivial endeavour: multiple probes (>5!) with correlated signal, noise and systematics.
- Generic analysis models for different probe combinations.
- Generic implementation of systematic models that can easily grow in complexity.
- Avoid inconsistencies between probes in terms of theory or systematics.

Note: TJPCosmo != CCL
TJPCosmo: status and plans

First hack at Oxford
~3 weeks ago
TJPCosmo: status and plans

Implementation of first 3x2pt likelihood!
• Dark Energy from LSST from 5 different probes
• Huge potential for LSS+WL (3x2pt)
• Lots of work going on:
 • **CCL**: theory calculator
 • **LSS loop**: fast simulations for LSS pipeline tests (and science!)
 • **LSS with HSC**: new data, new challenges
 • **3x2pt pipeline**: flagship analysis for LSST
 • **TJPCosmo**: robust parameter inference for multi-probe experiments
• Open and friendly work environment. **Contribute!**
Summary

- Dark Energy from LSST from 5 different probes
- Huge potential for LSS+WL (3x2pt)
- Lots of work going on:
 - **CCL**: theory calculator
 - **LSS loop**: fast simulations for LSS pipeline tests (and science!)
 - **LSS with HSC**: new data, new challenges
 - **3x2pt pipeline**: flagship analysis for LSST
 - **TJPCosmo**: robust parameter inference for multi-probe experiments
- Open and friendly work environment. **Contribute!**

Obrigado!